Math 206B Lecture 24 Notes

Daniel Raban

March 6, 2019

1 Topics on Skew Tableau and Skew Schur Functions

1.1 Complexity of the number of skew tableau

Recall that skew Schur functions satisfy

$$s_{\lambda \setminus \mu} = \sum_{A \in \text{SSYT}(\lambda \setminus \mu)} x^A$$

Let $f^{\lambda \setminus \mu}$ be the number of $SSYT(\lambda \setminus \mu)$.

Theorem 1.1 (Jacoi-Trudy).

$$f^{\lambda \setminus \mu} = n! \det \left[\left(\frac{1}{(\lambda_i - \mu_i + j - i)!} \right) \right]$$

Corollary 1.1. $f^{\lambda \mid \mu}$ can be computed in polynomial time.

Theorem 1.2 (Pittmer-Pak). Let D be an arbitrary shape of a diagram (not necessarily a skew shape). Then f^D is #P complete.

This is equivalent to the following theorem.

Definition 1.1. Bruhat $(\sigma) = \{\omega \in S_n : \omega \leq \sigma\}.$

Theorem 1.3. $|\operatorname{Bruhat}(\sigma)|$ is #P complete.

1.2 Littlewood-riichardson coefficients for skew Schur functions

Recall that $s_{\mu}s_{\nu} = \sum_{|\lambda|=n} c_{\mu,\nu}^{\lambda}s_{\lambda}$, where $c_{\mu,\nu}^{\lambda}$ are the Littlewood-Richardson coefficients. Theorem 1.4.

$$s_{\lambda \setminus \mu} = \sum_{|\nu|=n-k} c_{\mu,\nu}^{\lambda} s_{\nu}.$$

Proof. The idea is to perform jeu-de-taquin on the skew tableau A of shape $\lambda \setminus \nu$.

One interpretation of this is that we can use Schur functions to construct $s_{\lambda \setminus \nu}$, which are symmetric functions that end up being nice.

Recall that

$$\begin{split} c^{\lambda}_{\mu,\nu} &= \left\langle S^{\lambda}, S^{\mu} \otimes S^{\nu} \uparrow^{S_{n}}_{S_{k} \times S_{n-k}} \right\rangle \\ &= \left\langle S^{\lambda} \downarrow^{S_{n}}_{S_{k} \times S_{n-k}}, S^{\mu} \otimes S^{\nu} \right\rangle. \end{split}$$

by Frobenius reciprocity. Then if π_{λ} is an irreducible representation of $\operatorname{GL}(n, \mathbb{C})$ corresponding to λ and s_{λ} is a character of π_{λ} , then

$$c_{\mu,\nu}^{\lambda} = \langle \pi_{\lambda}, \pi_{\mu} \otimes \pi_{\nu} \rangle$$

Theorem 1.5 (Knutsen-Tao, c. 2000). For all k, $c_{\mu,\nu}^{\lambda} > 0$ iff $c_{k\mu,k\nu}^{k\lambda} > 0$.

Corollary 1.2. It can be decided if $c_{\mu,\nu}^{\lambda} = 0$ in polynomial time.

Proof. $c_{\mu,\nu}^{\lambda} \neq 0$ if there exists a rational point in some certain polytope $P(\lambda, \mu, \nu)$ containing $c_{\mu,\nu}^{\lambda}$ integer points.

Theorem 1.6. Computing $c_{\mu,\nu}^{\lambda}$ is #P complete.

This is related to the following problem. When does A + B = C, when A, B, C are Hermitian matrices?

Theorem 1.7 (Klyacko). Let A, B, C be hermition matrices with (vector of) eigenvalues μ, ν, λ , respectively. Then there exist matrices A, B, C solving A + B = C iff $c_{\mu,\nu}^{\lambda} \neq 0$.